Go to the content


Applications are invited for a Ph.D. project position within the MAtrix / Mechanobiology & Tissue Engineering research group (www.mech.kuleuven.be/mechanobi...), a bioengineering group that is pioneering the role of cellular forces for microvascular formation and function in health and disease. The group is led by Hans Van Oosterwyck and is one of the few groups worldwide that has established 3D Traction Force Microscopy (TFM) routines and workflows for quantifying cellular force exertion in 3D, and routinely applies them to in vitro models of angiogenesis (endothelial invasion). Together with its research partners, it is currently developing novel in vitro models, compatible with TFM, to study the interplay between cellular force exertion, matrix mechanics and fluid flow, and how this interplay contributes to microvascular lesion formation within the context of specific (genetic) diseases.

Unit website: https://www.mech.kuleuven.be/e...


Cerebral cavernous malformations (CCM) is a microvascular disease characterized by abnormal brain microcapillary beds resulting from mutations in CCM-complex genes, with no current cure. While we have recently demonstrated the significance of aberrant cellular forces for CCM lesion formation in 3D endothelial monoculture systems (see doi: 10.1101/2023.11.27.568780), more complex co-culture systems are needed to better mimic the environment of in vivo lesions. This project centers on deciphering the intricate interactions between endothelial cells (ECs) and pericytes within an advanced vessel-on-a-chip model. By integrating a 3D microfluidic platform with force quantification methods, the study aims to comprehensively elucidate the roles of EC and pericyte forces in CCM progression, emphasizing the dynamic interplay between biochemical and biomechanical factors. Beyond advancing vessel-on-a-chip technology, the project holds promise for broader applications in microvascular disease.


We are looking for a highly motivated, enthusiastic and communicative researcher with a master’s degree in biomedical engineering, biotechnology or a related field. The candidate should have obtained excellent study results. In addition, we require:

  • experience with basic cell culture techniques, optical microscopy, preferably live cell imaging in 3D (confocal microscopy, fluorescence microscopy).
  • some experience with or exposure to scientific computing (such as finite element modelling) and programming (such as Matlab).
  • a strong interest in mechanobiology and mechanotransduction.
  • a collaborative attitude, passion for research, creativity.


We are offering an exciting Ph.D. position in a multidisciplinary, international and collaborative research environment. The MAtrix / Mechanobiology & Tissue Engineering group is working on cutting-edge methods for cellular force inference and is addressing important questions in vascular (mechano)biology in close collaboration with its biomedical partners. The group is based at the Leuven Chem&Tech / Leuven Nanocentre (https://set.kuleuven.be/chemte...) that forms the perfect environment for technology development and that houses unique equipment related to e.g. optical microscopy and nanoscopy, micro-, nano- and biofabrication and biosensing. KU Leuven is one of the oldest universities in Europe, with a very rich tradition in research and higher education. Today, it is among the best 100 universities in the world according to both Times Higher Education World Rankings and QS World University Rankings, and was ranked by Reuters as most innovative university of Europe since 2016. Leuven is a vibrant student town at the heart of Belgium and Europe, offering a great quality of life.

The group works in close collaboration with dr. Eva Faurobert at the Institute for Advanced Biosciences (University of Grenoble, France) and profs. Liz Jones, Aernout Luttun, Rozenn Quark and An Zwijsen (Centre for Molecular and Vascular Biology at KU Leuven), with whom you are expected to closely collaborate as well.

For more information please contact prof. Hans Van Oosterwyck, mail: hans.vanoosterwyck@kuleuven.be, Dr. Jorge Barrasa Fano, mail: jorge.barrasafano@kuleuven.be, Dr. Jyotsana Priyadarshani, mail: jyotsana.priyadarshani@kuleuven.be.

You can apply for this job no later than August 21, 2024 via the online application tool.

Apply before: 22/08/2024

How can we help?

The Leuven MindGate team is at your disposal for any questions about the Leuven Innovation Region. Do you want to invest, work or study in the region? We can help you find your way.

We also facilitate collaboration and innovation between companies, knowledge institutes and government within the Leuven Innovation Region, and we are happy to guide any of these stakeholders towards innovation.